Dirac structures for generalized Lie bialgebroids
نویسندگان
چکیده
منابع مشابه
Generalized Lie Bialgebroids and Jacobi Structures
The notion of a generalized Lie bialgebroid (a generalization of the notion of a Lie bialgebroid) is introduced in such a way that a Jacobi manifold has associated a canonical generalized Lie bialgebroid. As a kind of converse, we prove that a Jacobi structure can be defined on the base space of a generalized Lie bialgebroid. We also show that it is possible to construct a Lie bialgebroid from ...
متن کاملDirac structures for generalized
We establish some fundamental relations between Dirac subbundles L for the generalized Courant algebroid (A⊕A, φ+W ) over a differentiable manifold M and the associated Dirac subbubndles L̃ for the corresponding Courant algebroid Ã⊕ Ã over M × IR.
متن کاملMultiplicative Dirac structures on Lie groups
We study multiplicative Dirac structures on Lie groups. We show that the characteristic foliation of a multiplicative Dirac structure is given by the cosets of a normal Lie subgroup and, whenever this subgroup is closed, the leaf space inherits the structure of a Poisson-Lie group. We also describe multiplicative Dirac structures on Lie groups infinitesimally. Résumé Nous étudions les structure...
متن کاملBanach Lie algebroids and Dirac structures
We consider the category of anchored Banach vector bundles and we discuss the notion of semispray. Adding on the set of sections of an anchored Banach vector bundle a Lie bracket with some properties one gets the notion of Lie algebroid. We prove that the Lie algebroids form also a category. A Dirac structure on a Banach manifold M is defined as a subbundle of the big tangent bundle TM ⊕ T ∗M t...
متن کاملdirac structures
in this paper we introduce the concept of dirac structures on (hermitian) modules and vectorbundles and deduce some of their properties. among other things we prove that there is a one to onecorrespondence between the set of all dirac structures on a (hermitian) module and the group of allautomorphisms of the module. this correspondence enables us to represent dirac structures on (hermitian)mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 2004
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/37/7/011